Reptational dynamics in dissipative particle dynamics simulations of polymer melts.

نویسندگان

  • Petri Nikunen
  • Ilpo Vattulainen
  • Mikko Karttunen
چکیده

Understanding the fundamental properties of polymeric liquids remains a challenge in materials science and soft matter physics. Here, we present a simple and computationally efficient criterion for topological constraints, i.e., uncrossability of chains, in polymeric liquids using the dissipative particle dynamics (DPD) method. No new length scales or forces are added. To demonstrate that this approach really prevents chain crossings, we study a melt of linear homopolymers. We show that for short chains the model correctly reproduces Rouse-like dynamics whereas for longer chains the dynamics becomes reptational as the chain length is increased--something that is not attainable using standard DPD or other coarse-grained soft potential methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

Simulation of Individual Polymer Chains and Polymer Solutions with Smoothed Dissipative Particle Dynamics

In an earlier work (Litvinov et al., Phys.Rev.E 77, 066703 (2008)), a model for a polymer molecule in solution based on the smoothed dissipative particle dynamics method (SDPD) has been presented. In the present paper, we show that the model can be extended to three-dimensional situations and simulate effectively diluted and concentrated polymer solutions. For an isolated suspended polymer, cal...

متن کامل

Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation

We critically review dissipative particle dynamics ~DPD! as a mesoscopic simulation method. We have established useful parameter ranges for simulations, and have made a link between these parameters and x-parameters in Flory-Huggins-type models. This is possible because the equation of state of the DPD fluid is essentially quadratic in density. This link opens the way to do large scale simulati...

متن کامل

Adaptive resolution simulations coupling atomistic water to dissipative particle dynamics.

Multiscale methods are the most efficient way to address the interlinked spatiotemporal scales encountered in soft matter and molecular liquids. In the literature reported hybrid approaches span from quantum to atomistic, coarse-grained, and continuum length scales. In this article, we present the hybrid coupling of the molecular dynamics (MD) and dissipative particle dynamics (DPD) methods, br...

متن کامل

Molecular dynamics simulations of polymer transport in nanocomposites.

Molecular dynamics simulations on the Kremer-Grest bead-spring model of polymer melts are used to study the effect of spherical nanoparticles on chain diffusion. We find that chain diffusivity is enhanced relative to its bulk value when polymer-particle interactions are repulsive and is reduced when polymer-particle interactions are strongly attractive. In both cases chain diffusivity assumes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007